
Proceedings of the 2002 IEEE
Workshop on Information Assurance and Security

T1B2 1555 United States Military Academy, West Point, NY, 17–19 June 2002

The Trusted Computing Exemplar Project

Cynthia E. Irvine, Senior Member, IEEE, Timothy E. Levin, Member, IEEE,
Thuy D. Nguyen, George W. Dinolt Member, IEEE

Abstract— We describe the Trusted Computing Exemplar
project, which is producing an openly distributed worked
example of how high assurance trusted computing compo-
nents can be built. The TCX project encompasses four
related activities: Creation of a prototype framework for
rapid high assurance system development; Development of
a reference-implementation trusted computing component;
Evaluation of the component for high assurance; and Open
dissemination of results related to the first three activities.
The project’s open development methodology will provide
widespread availability of key high assurance enabling tech-
nologies and ensure transfer of knowledge and capabilities
for trusted computing to the next generation of developers,
evaluators and educators.

I. Introduction

Over the past decade, neither the private sector nor the
US Government have been significantly involved in high
assurance Trusted Computing acquisitions and research.
During this time, the focus on commercial off the shelf pro-
curements by these sectors has helped to fuel explosive ad-
vances in commercial technology, but it also contributed to
the lack of progress in the ability of commercial systems to
appropriately protect themselves and the data with which
they are entrusted. No new high assurance (viz. TCSEC
Class A1 or Common Criteria EAL6/7) systems have been
fielded. While industry has been driven to supply the latest
technology at the fastest pace, it has not been motivated,
either internally or externally via customer demand, to pro-
duce highly trustworthy computing systems. As a result,
the National Information Infrastructure is weak; there are
no contemporary high security, high assurance (i.e., high
robustness (see inset below)), off-the-shelf products avail-
able that can be used to strengthen it; and the National
capability to design and construct such trusted computer
systems and networks has atrophied.

To help address this, we have established the Trusted
Computing Exemplar (TCX) project, that will provide an
openly distributed worked example of how high assurance
trusted computing components can be built. The TCX

C.E. Irvine, T.E. Levin, T.D. Nguyen, G.W. Dinolt: Naval Post-
graduate School, Monterey, CA.
This material is based upon work supported in part by the Office of
Naval Research and other government sponsors. Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of the
sponsors.

project encompasses four related activities:
• Creation of a prototype framework for rapid high assur-
ance system development;
• Development of a reference-implementation trusted com-
puting component;
• Evaluation of the component for high assurance; and
• Open dissemination of deliverables related to the first
three activities.

The project’s open development methodology will pro-
vide widespread availability of key high assurance enabling
technologies and ensure transfer of knowledge and capabil-
ities for trusted computing to the next generation of devel-
opers, evaluators and educators.

Robustness

The term robustness is currently used in the context
of the Common Criteria [1] to describe what in the
TCSEC [2] was associated with the notion of assur-
ance. In the TCSEC assurance and functionality were
bound in each of the ordered Divisions and Classes.
Since the Common Criteria allow many more com-
binations of assurance and functionality, robustness
provides a loose indicator of how a system might be
viewed in terms of a assurance-functionality combi-
nation. A very high robustness system would be akin
to TCSEC Class A1.

II. Trusted Computing

Trusted computing is special. It addresses not only the
problems of frontal attacks, but also that of subversion:
the equivalent of software moles in the system. Frontal at-
tacks can take the form of Trojan Horse applications and
other assaults from outside the system. On the other hand,
moles are manifested as trap doors or other artifices placed
within the system [3], [4], [5]. They can be triggered by
conditions determined by the adversary and, when active,
can be used to launch any attack the adversary desires
from within the security perimeter [6]. The safeguards re-
quired to protect systems from trap doors go beyond those
required to protect against frontal attacks. Trusted com-
puting encompasses the science and engineering required
to specify, design, implement, and maintain components

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 30

in which we have a high level of confidence against both
system subversion and frontal attacks.

To protect against frontal attacks, systems must be de-
signed and implemented without exploitable flaws. The
systems must be designed to constrain access to informa-
tion and confine any damage resulting from the execution
of malicious application software. This approach acknowl-
edges that it would be infeasible and, in many cases, math-
ematically intractable [7] to analyze and verify all the ap-
plication software to determine whether its behavior is be-
nign. Most analysis techniques fail when confronted with
the possibility of malicious artifices [6].

Current ambiguities surrounding the terms assurance,
necessitates a precise definition of high assurance in the
context of the Trusted Computing Exemplar. Systems
must meet not only sound security criteria, but also be
built in such a way that it is possible to verify the pro-
tection mechanisms provided. Verification techniques such
as those described in the Common Criteria [1], result in
verified protection, a term we will use here.

Thus our definition of a high assurance system follows.
A system constructed with verifiable protection provides

high assurance that its security properties are correct and
complete, and it allows nothing beyond its specification. It
will be designed to have no exploitable security flaws and
will be constructed so that external inspection and anal-
ysis confirms that the protection mechanisms are correct,
complete and do nothing more than advertised.

The size and complexity of typical large systems prohibit
attempts to verify them in toto. An alternative approach is
where the properties of the system that must be verifiable
are limited to a small, complete and non-bypassable com-
ponent to which enforcement of security policy has been
allocated. By minimizing system size and complexity the
problem of verified protection becomes “tractable” [8].

The system is “proved” to enforce the security policy
and to protect itself from penetration using a combina-
tion of formal methods and rigorous argument. Self pro-
tection is demonstrated through analysis of the design. A
formal model describing core security policy and proper-
ties is mathematically proven to be sound and correct. All
elements of the system are demonstrated to be both neces-
sary and sufficient for enforcement of the policy. To achieve
this demonstration, the implementation is systematically
traced to the policy. This confirms there is no extraneous
code and the system is shown to do what it supposed to do
and nothing more.

Thus, our engineering approach is to divide systems into
two parts:
1. An internal trusted computing component that imple-
ments the protection mechanisms and
2. External software that is not trusted.

The external software is considered potentially malicious
and its execution is circumscribed by the trusted comput-

ing component. Using this approach, the effects of any
malicious activity can be controlled and audited.

Protection against trap doors also requires a structured
approach to system construction so that the trusted com-
puting base of the system can be subjected to analysis that
will ensure the absence of internal subversion. It is the
proof of absence of unspecified functionality that distin-
guishes trusted computing from safety and other forms of
high confidence computing.

III. Motivation for High Assurance Systems

The science and discipline of trusted computing as de-
fined above has been neglected for well over a decade.
The government and major contractors are now uncertain
about the cost and complexity of high assurance computer
projects. We lack developers who can create trusted com-
puting systems, as well as public domain worked examples
upon which new projects could be modeled.

The challenge of constructing highly secure systems is ex-
acerbated by the dearth of tools to support the process. At
the highest robustness levels, formal methods must be used
in the system specification and analysis. Many of the tools
specifically intended to support both formal methods and
trusted systems development are either no longer available
or lack ongoing support and modernization. We need to de-
velop a new generation of tools, base hardware and software
for developing trusted computing systems, and we need
concrete public domain examples of all the steps needed to
satisfy high assurance requirements, including end-to-end
formal proofs of policy enforcement, so that others can see
how high assurance systems are constructed.

Recently, commercial organizations have begun to real-
ize the need for trustworthy computing. Much of this ap-
pears to be driven by the need for Digital Rights Manage-
ment, the protection of copyrighted information in com-
puter systems. One current push for a solution comes from
the Trusted Computing Group (TCG) [9]. The group is
proposing a hardware based solution to the digital rights
management problem. Microsofts Next Generation Secure
Computing Base (NGSCB, previously called Palladium)
presents a specialized virtual machine monitor that will
partition the system into two domains, trusted and un-
trusted [10]. The approach appears to be one of ensuring
that only developer-signed code is allowed to operate on a
system and to access the copyrighted material.

Although this is a good first step, it is insufficient. There
is no understanding of how one should architect and design
the trusted portions of the system to provide assurance of
its correctness, nor is there an understanding that one must
limit the trusted portions to a small, analyzable portion of
the whole system. See, for example, a recent discussion of
this topic [11].

There have also been some recent government-sponsored
workshops and development in this area. These workshops

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 31

have emphasized various ad hoc mechanisms for analyz-
ing software for specific errors such as buffer overflow and
aliasing.

Although this approach is also a good step, it too is lim-
ited in scope. The approach seems to ignore much of the
past work that has been done in formal modeling of the
(security) properties of systems as well as program specifi-
cation and verification. It does not address how one might
ensure that a system does not have a trap door or meet a
particular security property.

Some work in formal methods provides proof of what the
code will do, e.g. proof carrying code [12], yet it provides
no insight for those interested in knowing what the code
will not do and encounters composability issues.

Other recently funded work attempts new approaches in
this area. The goal of this work is to provide tools that
ensure that the software is correct by construction. [13]
The approaches are primarily software engineering in na-
ture. The results of the work are software development
tools that may be useful in the verification of some of the
properties of the system that would be useful. The tools
do not address the high-level security architecture and de-
sign issues that are required for protection against moles
or other subversion attacks. There are no examples that
show the complete process that needs to be coherently in-
tegrated to produce a secure system, including hardware,
software, processes, etc.

To address the need for a high assurance secure system
as well as the absence of public domain worked examples
in this realm, the Center for Information Systems Security
Studies and Research (CISR) at the Naval Postgraduate
School is proposing a trusted computing exemplar project.
The remainder of this paper describes the project and its
goals.

IV. Project Overview

The purpose of the Trusted Computing Exemplar (TCX)
project is to provide a worked example to show how trusted
computing systems and components could be constructed.
The project will produce four related outputs:
1. A high assurance development framework,
2. A trusted computing component,
3. Evaluation of the component, and
4. Open distribution of project deliverables.

A prototype high assurance development framework will
be created first, and then used to produce a reference imple-
mentation trusted computing component, the TCX kernel.
A third-party evaluation of the component is planned (e.g.,
once the high-level design documentation is written). The
documentation, source code, development framework and
other deliverables will be made openly available as they are
produced. Co-located teams composed of a combination of
seasoned trusted computing veterans and “apprentices” are
performing these activities.

The combination of open methodology applied to all
project documents and deliverables and the mentoring of
project apprentices will result in transfer of trusted com-
puting technical know-how to a new generation of trusted
computing professionals. Furthermore, the public availabil-
ity of the high assurance development framework and the
reference trusted computing component will provide tech-
nology transfer of key enabling technologies to the com-
mercial, government, and open-source communities.

A. Framework for Rapid High Assurance Development

The prototype framework for rapid high assurance de-
velopment is intended to provide a set of interoperable
tools and define a set of efficient, repeatable procedures
for constructing trusted computing systems and compo-
nents. Our current framework reflects the requirements of
the Common Criteria, Version 2.1 [1]. Current research
results emerging from this aspect of the work includes, for
example: documentation tools, security engineering tech-
niques, etc.

The toolset will support automated management of high
assurance development throughout a products lifecycle, in-
cluding the following development functions:

• Specification of security properties
• Design specification
• Verification that security properties are self-consistent
• Verification that a design meets its target security prop-
erties
• Code development
• Verification that an implementation meets its target (and
contains no unspecified functionality)
• Configuration management of specifications, software,
tools and processes
• Specification-based testing
• Evaluation support through document structuring
• Teamwork and training support
• User document development

The framework will support the dissemination of project
deliverables using a philosophy similar to the open source
approaches. This open methodology will include mecha-
nisms for continuous contribution, evaluation and distri-
bution of the various project configuration items and de-
liverables.

Our approach for constructing the prototype develop-
ment framework will be to interconnect, through software
mechanisms and well-defined procedures, various state-of-
the-art but stand-alone tools, each of which contributes to
one or more of the required functions such as those de-
scribed above.

The development framework will be scaled to the size of
the project. It will reveal those aspects of such frameworks
that must be tailored to meet specific project requirements.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 32

B. Trusted Computing Reference Component Separation
Kernel

We will develop a high assurance, separation kernel and
a trusted application built to be hierarchically layered [14]
on the TCX Kernel as a reference implementation exemplar
for trusted computing. Because the product as well as the
process will be showpieces for trusted computing develop-
ment, high assurance methodologies and techniques will be
applied during the entire lifecycle (viz., design, implemen-
tation, distribution, and maintenance phases). The goal
is to produce a small, portable component that will take
advantage of modern hardware support, where applicable,
and that will provide users with correct security operation
and an a priori assurance against system subversion.

Some potential applications of the TCX Kernel are as a
trusted base for a multilevel network router, a red/black
crypto-separation device, a communications controller for
coalition-enabled mobile devices and a network authentica-
tor for remote clients. To demonstrate the kernels utility,
a high assurance network authenticator will be developed
as the application portion of the Trusted Computing Ex-
emplar.

C. TCX Kernel

The primary security function of the TCX kernel will be
to enforce process and data-domain separation, while pro-
viding primitive operating system services sufficient to sup-
port simple applications. The embedded focus of the kernel
drives several high-level design characteristics. The kernel
will be small but complete with respect to policy enforce-
ment. It will have a static runtime resource configuration
and its security policy regarding access to resources will
be based on static process/resource access bindings, that
are subject to offline configuration. We anticipate that the
kernel will support a small number of processes, data ob-
jects, and I/O devices. A RAM disk can be constructed
from storage resources, but there is no plan to support a
hard drive. Below, we provide a few more details about
our view of the kernel.

The kernel will create and support a fixed number of
application level processes established by the system con-
figuration. Application processes will be scheduled in a
round robin fashion with each process being given a prede-
termined amount of time, set by the configuration.

The process/resource access binding mechanism within
the kernel will allow the assignment of specific modes of
access, such as modify and observe, by which a process
may access a particular resource. A variety of policies can
be represented by this method, including one indicative of
lattice of security domains [15].

The static nature of the bindings means that the policy
represented by the set of bindings will be enforced glob-
ally and persistently until the system is taken offline. A
mandatory access control policy could then be supported

by maintaining consistency of the bindings across system
boots.

The kernel will provide mechanisms to handle asyn-
chronous interrupts. Any I/O will be handled by the kernel
and presented to processes via memory segments. The only
way that two processes may communicate will be through
shared memory segments that at least one can write and
the other can read. Different pairs of processes may use
different segments. Simple process synchronization primi-
tives will also be provided, that can be implemented to be
demonstrably free of covert channels [16], [17].

As part of kernel verification, we will prove that a pair
of processes can communicate only if there is a path of
processes with appropriately shared memory that connects
the two processes. The major result will be that if there
is no such explicit path, then the two processes will not be
able to communicate.

Our strategy is that by incorporating static resource al-
lotment and various forms of separation early in the devel-
opment process, we will both greatly simplify the design,
and minimize the amount of post-design modifications re-
quired to address covert channels. The static nature of
resource allotment will provide predictable processing be-
havior, as well as limit the covert channels based on shared
resource utilization [18]. Since resources are pre-assigned,
there will be no runtime allocation that would result in
changes visible to other processes. (Note that in past secu-
rity kernel projects, e.g. [19], [20], there has been a strug-
gle, after the system has been designed and initially con-
structed, to redesign around the covert channel problems
[17], [21]. For example, covert channels have been closed
via complex functional limitations in the software or con-
figuration, or through administrative procedures [22].)

Our goal in the “proof” of system security is to show
how the various hardware mechanisms are coupled with
the implementation of the kernel to achieve the desired
separation and covert channel properties.

D. Trusted Path Extension (TPE) Application

To demonstrate the utility of the TCX kernel, we will
develop a high assurance application that will use the se-
curity features of the kernel to assure its secure processing.
The demonstration system is a high assurance network au-
thentication device, which provides a trusted path exten-
sion (TPE) for communicating security critical information
with a remote secure server, such as in the MYSEA dis-
tributed security architecture (see Figure 1) [23]. This de-
vice interfaces between a specially configured COTS work-
station and the network. The device provides trusted path
authentication and negotiation services with which users
can establish trusted sessions with the server. Once logged
on through TPE, user sessions at the workstation may in-
teract with the secure server using the negotiated security
parameters. For this architecture, the workstation does not

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 33

Fig. 1. MYSEA System Architecture: Client-TPE-Server.

need to be trusted to support security critical services.
Communications on the path between the TPE and the

secure server are cryptographically protected, both during
session negotiation and during the user session. Trusted
Path Extension functions are implemented as trusted ap-
plication programs of the TCX kernel, which is hosted on a
handheld style hardware platform (other form factors such
as PCMCIA and PCI cards are also being considered). The
TPE has a layered design, consisting of the kernel (in the
most privileged execution domain, 0), a set of trusted func-
tions operating in an execution domain with intermediate
privilege (1) and an application layer (in an unprivileged
execution domain, 2). Functionality and security policy is
allocated to each layer to minimize the trust required in
any given module. The kernel layer is configured to sepa-
rate the workstation domain (i.e., workstation data pack-
ets, and their processing) from the network domain, while
providing a means for trusted transfer of packets between
the two domains. The execution domain 1 policy allows
data transfer to occur only after session-level negotiation
has occurred. Application programs in the least privileged
domain provide logic for data movement between input and
output devices and buffers, subject to the restrictions im-
posed by the more privileged execution domains, 0 and 1.

E. TPE Hardware Form Factor

Hosting of the TPE on a separate, small form-factor de-
vice provides several benefits. First, the device processor
and memory are physically separate from the workstation,
so that there is no question of interference from user pro-
cesses. Second, trusted path functions need to have abso-
lute control of the screen and keyboard to ensure that the
user is communicating directly with the trusted computing
base. Since the TPE device has its own screen and key-
board, we can ensure that trusted path I/O functions are

completely controlled without having to analyze the poten-
tially complex mechanisms of the workstation screen and
keyboard. Third, the secure attention key design, through
which the user signals that s/he desires to communicate
with the TCB, is straightforward relative to attempting to
utilize keystrokes from a standard workstation keyboard.

F. The Development Process

The goal of our work is to provide very high assurance
that the system will meet its security objectives and will
not contain any mechanisms (software) that will permit
subversion. To accomplish this we propose the following
steps:

• Develop a written description of the security policy of
the system.
• Construct a formal (mathematical) model of the security
policy that reflects salient abstract characteristics of the
system.
• Present an argument that the model of the security policy
is an accurate representation of the policy, and verify that
the model is self-consistent.
• Develop a top level specification of the kernel using the
model defined above.
• Verify that the top level description of the kernel satisfies
the security model.
• Develop a test plan that is driven by the top level speci-
fication for both presence and absence of security function-
ality in the implementation.
• Develop an implementation of the system based on the
top level description.
• Provide a code correspondence that shows that the im-
plementation is a faithful representation of the top level
specification. We will use as much automation in this step
as is practical.
• Test the system to validate that it is correctly imple-
mented.
• Provide a covert channel analysis.
• Provide the appropriate controls on the documentation,
verification processes, software, etc. to ensure that they
cannot be subverted during the construction and delivery
process.

These steps constitute an iterative rather than a sequen-
tial process. As steps in the lower levels of the process
are expanded, incompleteness, inconsistency or some other
form of weakness in their realization may become evident.
The results of steps above will then be revised to take into
account the new information.

The goal is to present a well structured demonstration
that the system implements its security policy. We intend
that the documentation will help to provide the appropri-
ate level of assurance. Of course, that assurance also de-
pends on the implementation of the hardware, the correct
configuration, etc.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 34

Each of these steps has a deliverable that is a description,
a specification, a proof, code, etc. These paper deliverables
will be part of the materials made available to the outside
world, and will include overview materials that show how
they fit into the development process, how each document
relates to the other documents and how the particular doc-
ument was constructed.

The process we describe above is similar to the system
development processes used to build any large system. The
major differences are in the integration of the formalisms
used to provide the assurances that the system meets its
(security) goals and the rigor required by the Common Cri-
teria for high robustness documentation.

Verified protection, by definition [1] requires a highly
controlled and restrictive development process. Since it is
the objective of the Trusted Computing Exemplar project
to make its results available and useful to a broad audi-
ence in government, industry and academe, the effort uses
openly available tools when possible.

G. Reference Component Evaluation

An independent security evaluation is required to pro-
vide confidence in the assurance claims made for a trusted
component. Currently, no U.S. organization we are aware
of is prepared to perform or oversee a complete EAL7 level
evaluation of a computer component or system. CISR will
assist in developing the technology, processes and proce-
dures for use in the evaluation of a component at that level.

Once the evaluation processes are better understood, the
reference component, the TCX kernel, will be subjected to
a third-party Common Criteria evaluation at the EAL7 [1]
level. As there do not currently exist any generally ac-
cepted protection profiles for this type of high assurance
system or component, we are now working as part of a
team to develop an EAL6+ protection profile for a generic
class of “separation” kernels. Our protection profile effort
will contribute to the development of a security target for
evaluation of the TCX kernel. The profile and security tar-
get will draw upon the TCSEC Class A1 criteria [2], and
the guidelines available in the Common Criteria documen-
tation. The completed kernel evaluation will provide the
basis for a subsequent evaluation of the overall TPE sys-
tem, including the application functions that implement
the extended security policy.

We have just completed the development of Common
Evaluation Methodology guidelines for configuration man-
agement at EAL5 through EAL7 [24]. It is expected that
this work will help begin to fill in the gaps in guidance
above EAL4 for high assurance systems.

H. Open High Assurance Methodology

Utilizing the open methodology tools and procedures de-
veloped in the High Assurance Development Framework
(see above), the deliverables and outputs of the Trusted

Computing Exemplar Project will be made available to the
public. This will include such items as source code, project
plans, and evaluation evidence and reports.

Part of our work will be to document for distribution the
development framework, including its tools, methods, tech-
niques, and social model. By making available the various
high assurance internal engineering, evaluation and devel-
opment framework documents, the Exemplar project will
provide previously unavailable examples of how-to for high
assurance trusted computing.

V. Related Work

A few security-oriented projects have made a large body
of work available for perusal by others. The most notable
is Multics [25]. The documentation, source code and all
papers was available to users of the system. Unfortunately,
this wealth of information was available only to those with a
Multics site, the expense of which was prohibitive for most
educational institutions. Despite the care with which the
Multics system was constructed, it was not high assurance
and had significant security vulnerabilities [3].

In contrast, several efforts received considerable atten-
tion through papers and presentations, but did not pro-
vide open access to the high assurance process. For exam-
ple, the PSOS high assurance effort [26], although designed
for security and, was never evaluated due to the lack of a
complete, documented implementation. Systems such as
SCOMP [27], KSOS [28], the VAX VMM Security Ker-
nel[29] and GEMSOS [19] efforts were proprietary, so their
internals have not been available for general inspection.

VI. Conclusion and Future Work

We have presented the Trusted Computing Exemplar, a
small high assurance system that serves several purposes.
First, it is intended to be a pedagogical resource for in-
struction in constructive security. Second, it will result in
a separation kernel that can be used to support security
critical functions and can be extended for enforcement of
additional security policies. Third, the project will produce
new tools and processes for high assurance development.

Considerable future work is planned for the TCX project.
For example, the development framework being created
to support the TCX is tailored to the magnitude of the
project. Generalization of this framework to support dif-
ferent target technologies and larger projects is a topic for
future research.

References

[1] ISO/IEC 15408 - Common Criteria for Information Technology
Security Evaluation. No. CCIB-99-031, International Organiza-
tion for Standardisation, version 2.0 ed., August 1999.

[2] Department of Defense Trusted Computer System Evaluation
Criteria. No. DoD 5200.28-STD, National Computer Security
Center, December 1985.

[3] P. A. Karger and R. R. Schell, “Multics Security Evaluation:
Vulnerability Analysis,” Tech. Rep. ESD-TR-74-193, Vol. II, In-
formation Systems Technology Application Office Deputy for

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 35

Command and Management Systems Electronic Systems Divi-
sion (AFSC), Hanscom AFB, Bedford, MA 01730, 1974.

[4] P. Myers, Subversion: The Neglected Aspect of Computer Se-
curity. M.S. thesis, Naval Postgraduate School, Monterey, CA,
1980.

[5] K. Thompson, “Reflections on Trusting Trust,” Communica-
tions of the A.C.M., vol. 27, no. 8, pp. 761–763, 1984.

[6] E. A. Anderson, C. E. Irvine, and R. R. Schell, “Subversion as
a Threat in Information Warfare,” 2004.

[7] D. Spinellis, “Reliable Identification of Bounded-Length Viruses
is NP-Complete,” IEEE Transactions on Information Theory,
vol. 49, pp. 280–284, January 2003.

[8] R. R. Schell, “Computer Security: The Achilles’ Heel of the Elec-
tronic Air Force,” Air University Review, pp. 16–33, January-
February 1979.

[9] TCG, “What is the Trusted Computing Group?,” in
https://www.trustedcomputinggroup.org/home, (downloaded 20
March 2004.), 2004.

[10] P. England, B. Lampson, J. Manferdelli, and B. Willman, “A
Trusted Open Platform,” IEEE Computer, vol. 36, pp. 55–62,
July 2003.

[11] R. Anderson, “TCPA/Palladium Frequently Asked Questions.”
Fall 2002.

[12] G. C. Necula, “Proof-Carrying Code,” in Proccedings 24th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, (Paris, France), pp. 106–119, ACM
Press, January 1997.

[13] J. McDonald and J. Anton, “SPECWARE - Produciing Soft-
ware Correct by Construction,” Tech. Rep. KES.U.01.3, Kestral
Institute, 3260 Hillview Avenue, Palo Alto, CA, 2001.

[14] E. W. Dijkstra, “The Structure of the ”THE”-Multiprograming
System,” Communications of the A.C.M., vol. 11, no. 5, pp. 341–
346, 1968.

[15] D. E. Denning, “A Lattice Model of Secure Information Flow,”
Communications of the A.C.M., vol. 19, no. 5, pp. 236–243,
1976.

[16] D. Reed and R. Kanodia, “Synchronization with Eventcounts
and Sequencers,” Communications of the A.C.M., vol. 22, no. 2,
pp. 115–123, 1979.

[17] T. E. Levin, A. Tao, and S. J. Padilla, “Covert Storage Channel
Analysis: A Worked Example,” in Proc. National Computer Se-
curity Converence, (Washington, DC), pp. 10–19, October 1990.

[18] R. A. Kemmerer, “A Practical Approach to Identifying Storage
and Timing Channels,” in Proceedings of the 1982 IEEE Sympo-
sium on Security and Privacy, (Oakland, CA), pp. 66–73, IEEE
Computer Society Press, April 1982.

[19] R. Schell, T. F. Tao, and M. Heckman, “Designing the GEMSOS
security kernel for security and performance,” in Proceedings 8th
DoD/NBS Computer Security Conference, pp. 108–119, 1985.

[20] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E.
Kahn, “A VMM Security Kernel for the VAX Architecture,” in
Proceedings of the IEEE Symposium on Research on Security
and Privacy, pp. 2–19, IEEE Computer Society Press.

[21] J. Wray, “An Analysis of Covert Timing Channels,” in Proceed-
ing of the IEEE Symposium on Research in Security and Pri-
vacy, (Oakland, CA), pp. 2–7, IEEE Computer Society Press,
May 1991.

[22] W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,” in
Proceedings of the IEEE Symposium on Research in Security
and Privacy, (Oakland, CA), pp. 8–20, IEEE Computer Society
Press, May 1991.

[23] C. E. Irvine, T. E. Levin, T. D. Nguyen, D. Shifflett, J. Khos-
alim, P. C. Clark, A. Wong, F. Afinidad, D. Bibighaus, and
J. Sears, “Overview of a High Assurance Architecture for Dis-
tributed Multilevel Security,” in IEEE Workshop on Informa-
tion Assurance (to appear), 2004.

[24] M. Gross, “Common Evaluation Methodology Configuration
Management Guidance for High Assurance Systems,” Master’s
thesis, Naval Postgraduate School, March 2004.

[25] F. J. Corbato and V. A. Vyssotsky, “Introduction and Overview
of the Multics System,” in Proceesings of AFIPS FJCC, pp. 619–
628, 1965.

[26] P. Neumann, R. Boyer, R. J. Feiertag, K. N. Levitt, and

L. Robinson, “A Provably Secure Operating System: The Sys-
tem, Its Applications and Proofs,” Tech. Rep. CSL-116, SRI
International, Menlo Park, CA, May 1980.

[27] T. V. Benzel, “Analysis of a Kernel Verification,” in Proceedings
of the 1984 IEEE Symposium on Security and Privacy, (Oak-
land, CA), pp. 125–131, IEEE Computer Society Press, April
1984.

[28] T. Berson and G. Barksdale, “KSOS - Development Method-
ology for A Secure Operating System,” in AFIPS Conference
Proceedings, Vol. 48, pp. 365–371, 1979.

[29] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E.
Kahn, “A Retrospective on the VAX VMM Security Kernel,”
Transactions on Software Engineering, vol. 17, pp. 1147–1165,
November 1991.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 36

